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Shear-induced domain deformation in a tilted lipid monolayer:
From circle to ellipse and kinked stripe
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The shear-induced domain deformation in a lipid monolayer comprised of tilted molecules is studied as a
mechanical balance between surface pressure, line tension, electrostatic energy due to the dipole-dipole inter-
action, hexatic-elastic stress, and viscous stress. It is found that a simple shear can deform a circular domain
into an elliptic shape with the long axis inclined 45° from the shear direction. The “ellipse” is elongated in the
long axis as shear rate increases, and evolves to a straight or kinked stripe, which was observed as a ‘““shear
band” by Fuller’s group [Science 274, 233 (1996)] and “avalanche-like fronts” by Schwaltz’s group [Langmuir
17, 3017 (2001)], at a threshold shear rate. The propagation of stripe-shaped domains is discussed in the
context of electrostatic energy. The dependence of the threshold shear rate on surface pressure is predicted in
good agreement with observation and can be used to estimate surface viscosity. The shear-induced domain
deformation is maintained by the effect of the lattice elastic stress when shear ceases.
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The structures of amphiphile monolayers have been stud-
ied extensively during the past two decades [1]. Of particular
interest are the condensed phases L, and L), in which the
polar heads of the constituent amphiphiles are aligned on a
deformed hexatic lattice as observed by experiments [2,3]
and predicted by theory [4], whereas alkane tails are tilted
toward a nearest neighbor (NN) in L, phase and a next near-
est neighbor (NNN) in L) phase. During the same period,
much work has been devoted to the understanding of the
shape and shape transition of condensed phase domains sur-
rounded by a fluid phase [5-10] by considering the compe-
tition between the long-range electrostatic force and the line
tension at domain boundary, yet without regard to structure
knowledge. Recently, it was revealed that domain shapes
were dependent on phase structures in condensed phase. In
Brewster angle microscopy (BAM) observation in two types
of flow, i.e., pure extension and simple shear (Fig. 1), Full-
er’s group [11-13] found an indication of strong coupling
between shear flow, domain shape, and molecular orienta-
tion. They found that initially rich mosaic polydomain struc-
ture of L, phase was annealed by a shear flow more obvi-
ously than in L, phase so that only two orientations either
along or against the flow direction are possible. They also
found that the reorientation was accompanied by a sudden
appearance of new domains in L; called “shear bands” with
boundaries oriented toward =45° from the extension axis for
the extension flow [Fig. 5 (H) in [12]] and either parallel or
perpendicular to the flow direction of simple shear flow [Fig.
14 in [13]]. The mechanism of reorientation was argued
[11-13] as the flow alignment of bulk nematic liquid crystals
(NLCs) proposed by Helfrich [14]. On the other hand,
Schwartz’s group observed a novel feature in a simple shear
flow [15,24,25]: rotational flow [Fig. 1(b)] induced the rota-
tion of an L) domain, which is accompanied by a faster ro-
tation of molecular tilt azimuth than the domain rotation,
so-called molecular precession (Fig. 2 in [24]). Moreover,
they found continuous orientation jump (Fig. 4 in [24]) and
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argued a different orientation mechanism: the C,, symmetric
lines of the pseudohexagonal lattices in L) (or Ov) phases
must align in the flow direction (Fig. 4 in [15]). Recently, the
observations of shape relaxation of the shear-stretched do-
mains in Langmuir films have been successfully used to
study line tension between the fluid phases [16-19].
Theoretically, there have been several studies of the shape
relaxation of fluid domains in Langmuir films by using the
general hydrodynamics model [18,20-23], however the es-
sential difference of the phases between the domain bound-
aries, the L, and L) and isotropic phases, has not been con-
sidered in physics. On the other hand, we have investigated
the compression-shear-induced azimuth orientation, i.e., a
C..— C,, transition of a monolayer in tilting phases (L, and
Lé), as mechanical balance between the elastic stress in
hexatic alignment and viscous stress of two-dimensional
(2D) LC flow [26]. With the same model, we analyzed the
shear-induced orientation of L, and L; phases in the pure-
extension and simple shear flows [27], and Fuller’s and
Schwartz’s groups have been accounted for on the basis of
this model. The predicted steep change of flow orientation
(Fig. 3 in [27]) shows beautiful quantitative agreement with
the observation (Fig. 4 in [24]). However, our treatment of
the problem is still insufficient. Although the “shear band”
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FIG. 1. Two types of flow induced by a four-roll mill used by
Fuller’s group: (a) a pure extension and (b) a simple shear (after
Fig. 1 in Ref. [13]).
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was discussed by 2D Wulff construction [27], a quantitative
analysis for either domain deformation or shear band forma-
tion has not been achieved yet.

In this paper, a generalized 2D Young-Laplace equation is
derived for a monolayer domain in mechanical balance be-
tween the line tension, surface pressure, electrostatic force,
elastic stress, and viscous stress. We solved the equation ana-
Iytically and demonstrated that simple shear flow can deform
a circular domain into an elliptic shape with the long axis
inclined by 45° from the shear direction. In increasing shear
rate, the “ellipse” grows mainly in the direction of the long
axis and evolves into straight or kinked stripes at a threshold
shear rate. The propagation of stripe domains is also dis-
cussed in the context of the electrostatic energy due to the
dipole-dipole interaction, which is renormalized to the effec-
tive line tension in our previous study [9,10]. The boundary
orientation and kink angles of the stripe domains predicted in
the present theory are in good agreement with those of the
“shear bands” observed by Fuller’s group and of the
avalanche-like fronts observed by Schwartz’s group [25] (see
below for details). Especially, the obtained dependence of the
threshold shear rate on the surface pressure difference shows
quantitative agreement with experimental observation and
can be used to estimate the surface viscosity, a classical test
in 2D flow. We also show that shear-induced domain defor-
mation including orientation is maintained by the effect of
the lattice elastic stress.

STATICS

In static equilibrium, the shape of a 2D domain is deter-
mined by the minimization of the shape free energy [9,10],

F:APerA+)\§dS+Fdipole’ (l)

where dA and ds are the domain area element and boundary
length element, respectively (see Fig. 2). N is the line ten-
sion. AP=II-g,, where II is the surface pressure and g is
the difference of Gibbs free energy density between the outer
(isotropic fluid phase) and inner (L, or L,) phases. g, is
negative since L, and L} are more condensed than the iso-
tropic fluid phase. Fgipoe is the electrostatic energy due to the
dipole-dipole interaction. Applying the variational principle
(8F=0) to the shape free energy, we have derived the shape
equation for monolayer domains with uniformly tilted dipole
moments as [10]

AP — Ak + ar’® + Br, + Tk, =0, (2)

where « is the curvature of boundary curve, k,=dk/ds, and
Kk, =d’k/ds’. The derivation of Eq. (3) is given in the Ap-
pendix to be self-contained. A, a, B, 7 are dependent on the
molecular tilt angle € from the monolayer normal, the dipole
density u=puq(sin 6,0,cos 6), the boundary perimeter L, and
the boundary azimuth ¢(s), i.e., the angle between the
boundary tangent and the in-plane component of the dipole
density [see Egs. (A19)-(A22)]. For example, the effective
line tension A, in which the contribution of Fjye is renor-
malized, takes the following complex form:
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FIG. 2. The geometry of the monolayer domain.
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with u | =ug cos 6 and u=pug sin 6. h is the thickness of the
monolayer. Equation (2) represents the mechanical balance
of the stress applied at the domain boundary in the normal
m(s)[=(sin ¢(s),—cos ¢(s))] of the domain boundary curve
(see Fig. 2). The formation mechanism of some complex
domain shapes observed in a lipid monolayer has been re-
vealed from the solution of Eq. (2) [10].

DYNAMICS

In the application of simple shear, straight fronts are sud-
denly nucleated and are propagated in the direction 45° from
the flow direction [15]. This indicates that the fronts are the
shape deformation of domains induced by the monolayer hy-
drodynamics. In the presence of monolayer flows, a part of
the work done by the mechanical stresses is dissipated, and
viscotic stresses are applied in the monolayers. Domains in
monolayers deform their shape to achieve mechanical bal-
ance at the domain boundary, i.e.,

AP — Ak + ar’ + Bk, + Tk, =m(s) - (t° = t") - m(s).
4)

m(s)=(sin ¢(s),—cos ¢(s)) is the outward normal vector of
the domain boundary curve [Egs. (7) and (8) in [10]]. t°"* and
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t'" are the outer and inner viscous stress tensors, respectively.
This treatment has been used to analyze the fluctuation of
vesicles and membranes [28]. The left-hand side of Eq. (4)
has been derived for the static monolayer domains with uni-
formly tilting dipoles, i.e., the left-hand side of Eq. (2). In
other words, the shape equation, Eq. (2), is a special case of
Eq. (4). The viscous stress from the outside phase is simply
written as £'=nd; with d,»j=%(vj’,-+v,»’j), where v;;
=dv;/dx; (v is the velocity field in the outside phase) since
the outer phase is just an isotropic fluid. 7 is the (isotropic)
viscotic coefficient of the outer phase. On account of the
tilting of molecular tails, in-plane viscosity of monolayers in
L, and L} phases is anisotropic. In a similar manner to our
previous studies [26,27], we regard monolayers in these
phases as nematic liquid crystals (NLCs) and use the viscotic
stress tensor of the Ericksen-Leslie theory of NLCs [29,30]

in
ti = pnyidi + poniN; + s N+ pady; + psningdy;
+ ,u.6njnkdk,-, (5)

for the representation of the viscous stress applied from the
inner phase. The Einstein sum rule is used in the expression.
M1— M are Leslie viscotic coefficients.
n[=(sin 6 cos 7y,sin @sin y,cos 6)] is the average orientation
of molecular tails (director) and N=dn/dt—w-n with w;;
:%(v ;i—V; ;). We assume a simple shear flow in the x direc-
tion [v=(€éy,0)] with constant shear rate €. The nonvanishing
components of d;; and w;; are dj,=dy;=€/2 and wi;=-w,,
=¢€/2. We have shown that the simple shear flow reorients
the director toward the direction of y=+y* or w—y* with
y*=arctan(\us/ w,). y* is small since |us]<|u,| (e.g., ¥*
=10° for p-azoxyanisoble [14]), which is in agreement with
the observation by Fuller’s group. For simplicity, we assume
v*=0 in the following. In the steady state (dn/dt=0), N=
—w-n. The normal tensile component of viscous stress from
the inner phase is calculated as m-t(i")~m=—§[,u,4+%(,u2
+ s+ s+ pug)sin® Gsin 2¢h(s). It is further reduced to
m- i m=—5u, sin 2¢(s) since py>| o+ pz+ps+ pg s
usually satisfied [29,30].

As a first approximation, we neglect the contribution of
the electrostatic energy for the moment, where uy=0 was
stated for the experiment carried out by Fuller’s group [13]
(p. 1839). We will discuss the contribution of the electro-
static energy later. On this assumption, Eq. (4) is reduced to

e
APIL _En L sin2 6)
ds 2

with Apy=pus—n. Apy is positive since the inner phase is
more condensed than the outer phase. k=—d¢/ds was used
to derive Eq. (6). The solution of Eq. (6) is derived straight-
forwardly as

5 COS W)

Po

tan ¢(s) = cos w, tan( + wl) —sin w,; (7)

for |sin w;| <1 (sin w,=€Auypy/2\), and
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s sinh w,

) — cosh w, (8)
Po

tan ¢(s) = sinh w, tan(

for |cosh w,|>1 (cosh w,=€Auypy/2N). po=N/(—=AP).
Without loss of generality, we chose ¢(0)=0 for Eq. (7) and
¢(0)=—cosh w, for Eq. (8).

Using dy/dx=tan ¢ and the most simple software, i.e.,
MATHEMATICA, we calculated a series of domain (or front)
shapes for Eqgs. (7) and (8) as shown in Figs. 3(a) and 3(b),
respectively. Figure 3(a) reveals that monolayers form a cir-
cular domain with radius p, when é=0, and that the circular
domain is deformed into an elliptic domain with the long
axis inclined by *£45° from the flow direction, i.e., the x
axis, for €<0 and é>0, respectively, as || increases. The
circular domain is also deformed into elliptic domains in the
case of y=r, and the long axis is inclined by +45° from the
flow direction for é<<0 and é>0, respectively. The angle can
be approved by the so-called four-vertices theorem [31]: A
closed and smooth planar curve has at least four vertices at
which curvature is extremal (k,=0). From Eq. (6), we have
Kk,=(EAuy/N)kcos2¢, ie., d=m/4,37/4,57/4,77/4 at
vertices, and the corresponding normal azimuth ¢'=¢
—a/2=—a/4,7w/4,317w/4,57/4. The shear deformation of
domain shapes from a circle to an inclined ellipse was re-
ported early in experiment (Fig. 1b in [8]). The present
theory clarified for the first time the mechanism of the shear
domain deformation analytically. The most important feature
of Fig. 3 is that the elliptic shape grows in size mainly in the
direction of the long axis. The growth of type-I fronts in L}
phase agreed with the growth of two elliptic shapes inclined
by —45° from the x axis (see inclined boundaries of the
bright domains of Fig. 6 in [25]) at é=—0.26 s!, obviously
with y*=.

Much to our surprise are the solutions of Eq. (8). At the
threshold shear, w,=0, Eq. (8) gives a straight stripe with
boundaries oriented in ¢=17/4 and ¢=37/4 [in Fig. 3(b) we
only showed one of them]. As w, value increases from the
threshold, the stripe domain develops a kink at which two
straight stripes cross. Each of the two stripes has boundaries
oriented in ¢(—o)=7—arctan e”“2 and ¢(o°)=m—arctan e“2.
Obviously, the kink angle ¢(%)—¢(—=) increases with |€|
from 0 (w,=0) to 7/2 (w,=»): actually, the kink angle is
already very close to 7/2 when w,=4 [in Fig. 2(b)]. Later,
we show the “shear band” observed by the Fuller group [12]
being the case of stripe domains with a kink angle of /2.
The propagation of avalanche-like fronts (type-II fronts) ob-
served by the Schwartz group (Fig. 7 in [25]) agrees with the
stripe domains with a kink angle of 30° in L; at T=17 °C,
I1=23 mN/m, and é=-0.55s"! reproduced in the present
study. The threshold surface pressure Il is derived from the
condition of cosh w,>1 as

1
> gy- E|5|A,U~4 =[1(é), 9

where type-II fronts form. Equation (9) shows nice agree-
ment with the experimental results of the II-é “phase dia-
gram” (Fig. 3 in [25]), where Il is a decreasing function of
€. We roughly estimated the surface viscosity Au, from the
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FIG. 3. (Color online) Two types of shear-induced domain shape
transition. (a) The case of weak shear; circle to elliptic shape tran-
sition calculated by Eq. (6) with indicated w, values. (b) The case
of strong shear; a straight stripe domain is formed at the threshold
shear rate (w,=0), and the stripe domain develops a kink as w,
increases.

tangent of II(C+F+A)—é curve at |¢=0.6s~! in the dia-
gram as Au,=0.3 gs~!. The decrease of the tangent of the
I1-€ indicates that Au, decreases as € increases (shear thin-
ning), which is in good agreement with the classical viscos-
ity measurement in a channel flow (Fig. 8 in [32]).

PHYSICAL REVIEW E 78, 051704 (2008)

SHEAR BANDS AND DIPOLE FORCE EFFECT

The above results in simple shear flow are valid in pure
extension flow with v=(éx,—éy) [Fig. 1(a)]. d|;=—d,,=¢€ are
the only nonzero components of d;; and w;; of pure extension
flow. The nonzero component of the viscous stress tensor is
£ =[py sin? 0+ (us+pe)sin® 0+ pyJé~ puyé and £55'=—pyé.
Therefore, the shape equation of monolayer domains in pure
extension flow is derived as

APNIP _En L cos 20, (10)
ds 2
In the variable transformation ¢(s)=¢(s)+/4, Eq. (10) is
rewritten as AP+)\i—f:§A,u4 sin 2¢, which is the same as
Eq. (6). In other words, the solution of Eq. (10) is derived by
turning the solution of Eq. (6) by 45°. The shear bands ob-
served by Fuller’s group in L) [Fig. 5 (B) and (H) in [12]] are
just the stripe domain with a kink angle of /2 [see Fig.
3(b)] rotated by 45° in the clockwise direction. The only
remaining question is why shear bands are observed only in
L5 but not in L,. In order to answer this question, we must go
back to the general equation, Eq. (4), to take into account the
electrostatic force due to the dipoles in the domains. It is
possible to neglect the contribution of the higher-rank terms
of « to the shape equation, i.e., the third, fourth, and fifth
terms of Eq. (2), when the domain shape is close to the
kinked stripe, where k— 0, and the electrostatic dipolar force
contributes as the effective line tension, which is expressed
as Eq. (3). In other words, the contribution of the electro-
static dipolar force is taken into account by just changing
N to A. The effective line tension is calculated as A=\

2 2
—(%—%)ln % The boundary length is enhanced when the
A value is negative, i.e.,

6= arctan A arctan V2 =54.7° = 6,,. (11)
My

In our previous study, we discussed that Fgi,.=0 at the
magic tilt angle 6, for circular domains. Experimentally, 6
> @), was generally satisfied in L,, e.g., §=60° was found in
an eicosanoic acid monolayer by Durbin et al. [2]. The ma-
terial used in [11-13] is docosanoic acid, the same kind used
by Durbin et al., and its tilt in L, cannot satisfy Eq. (11). This
may be the reason for the absence of a shear band in L,.

HEXATIC ELASTIC STRESS

In the above discussion, we have not taken into account
the elastic stress due to the deformation of a hexatic lattice.
Hexatic lattice structures of molecular heads are deformed by
the tilting of constituent molecules, and the internal elastic
stresses o associated with the lattice deformation also take
part in the mechanical balance at the domain boundary as

AP — Ak + ark’ + Biy, + Tk, =m(s) - (t° =" — o) - m(s).
(12)

Since the lattice deformation originates from tilting of con-
stituent molecules, the elastic stress tensor is determined by
the orientation of the director as [26,27]
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1
Om= E{K * ul[cos 2® cos 2(D - y)

+2 sin 2P sin 2(P — y)]}tan® 6, (13)
1 .
O1p=0y = E{M[Z sin 2P cos 2(P - )
— cos 2® sin 2(P — y)]jtan’ 6, (14)

where + and — in the square brackets in Eq. (13) are applied
to o, and 0, respectively. 6§ and v are the tilt angle and tilt
azimuth of director n. @ is the angle between the x axis and
the NN direction of the hexatic lattice. K and u are the plane
compression modulus and shear modulus, respectively [33].
In a simple flow, we have assumed y=0 (or ) due to
the flow orientation. Therefore, ®=0 for L, and ®=7/2
folr L;. This reduces Egs. (13) and (14) to oy ,=0xn
=5[K* pultan’ @ and oj,=0,,=0 for both L, and Lj. Ne-
glecting the dipolar force, we derive a new shape equation
for simple shear flow,

ES
AP*+)\di=Csin2cp*, (15)
ds

with AP*=AP+% 5K tan® 6 and o* =+ P*. d*
=7 arcsin[$ p tan’ 0/ C] and C=3V(EAuy)?+ (i tan® 6)% In
a similar manner to the previous treatment, the solution of
Eq. (15) is derived by rotating the solution of Eq. (6) by ¢*
in the clockwise direction. Equation (15) indicates that do-
mains with a hexatic lattice form elliptic shapes, kinked
stripe shapes, and shear bands in a simple shear, and that the
domain shapes remain even after the flow is stopped (€=0)
but all turn 45° from the solution of Eq. (6) (¢*=7/4 for
€=0). In other words, the long axis of the elliptic domain
induced by pure elastic stress is oriented perpendicular to the
tilt direction (x axis) for w>0 or parallel to the tilt direction
for w<<0. Thus far, it has been considered that the elliptic
shape of monolayer domains, e.g., Fig. 5 in [7] and Fig. 4 in
[34], originated from electrostatic dipolar force. Our present
analysis indicates the possibility that the formation of an
elliptic shape is ascribed to the elastic stress of the deformed
hexatic lattice. The sharpness of the kink angle is a common
feature of kinked stripe domains; it is induced by the elastic
stress. The reported value of the inner kink angle 100 * 10°

[35] is well within the range of our prediction [Fig. 3(b)].

SUMMARY

We have analyzed the shape transition of monolayer do-
mains comprised of dipolar molecules tilted from the water
surface normal under shear flow on the basis of mechanical
balance of forces. The calculated results predict two types of
transition: (i) In a weak shear (é€<<¢&,), a circular domain is
deformed to an elliptic domain, growing in size in the long
axis, and with certain inclined angle dependent on shear
type. (i) In a strong shear (> &), straight or kinked stripe
domains are formed [€&,=2N\/(Au4py)]. The domain shapes
induced by shear flow remain after the flow is stopped due to
the coupling between the shear-induced orientation and the
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lattice elastic stress. We believe that the shear-induced self-
assembled domains may be significant for the bottom-up de-
sign of the 2D device.
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APPENDIX A: DERIVATION OF EQ (3)

Here, we outline the derivation of Egs. (2) and (3). The
derivation of these equations is given in detail in [10]. We
derive the shape equation, Eq. (2), by applying the varia-
tional principle to the free energy, Eq. (1). The electrostatic
energy Fipole arising from dipole-dipole interaction is writ-

ten as [5]
% 39 (D) - t(s) ts)
Ir(l) - I'(S)|

. ﬂﬂg [t() - Dollz(s) - Fol
2 |r (1) —x(s)]

where r(s) and t(s) are positional and tangent vectors of the
domain boundary curve. s (/) are the length parameter of the
boundary curve and ds (dl) are line elements. The first and
second terms are the contributions of the normal and in-plane
components of dipole moments, respectively. Equation (A1)
expresses nonlocal interaction between electric dipoles,
where it is represented by the double line integral, and it is
difficult to find the shapes of minimal free energy in general.
We approximate the free energy on the basis of the Frenet-
Seret theorem.

The derivatives of r(s), t(s), and m(s) are given by the
Frenet-Seret theorem, and are represented as

F dipole = —

dids, (A1)

d
gr(S) t(s), (A2)
d
—t(s) = k(s)m(s), (A3)
ds
—m(s) = — k(s)t(s) (A4)
ds

by the curvature x(s) of the boundary curve. It indicates that
Taylor expansions of r(s) and t(s) are possible as

r(s+x)=r(s)+t(s)x + %K(s)m(s)x2 + %[KS(S)HI(S)

— k($)*t(s) x>+ (AS5)

and

051704-5



IWAMOTO et al.

t(s +x) = t(s) + x(s)m(s)x + %[K‘Y(s)m(s) — k($)*t(s) x>+ -+

(A6)

with k,=dk(s)/ds and k,=d*«k(s)/ds>.

The key step to approximate the double line integrals is to
rewrite the energies of the two components of the dipole
moment as

4 [ t(s) - t(s + ) }
Fipole =~ > |r(s+x)—r(s)|dx ds

2 A A
u [t(s +x) - $ollt(s) - o] ]
) 3% o)1) )

(A7)

where the range of arc-variable x=1[-s is [Ah,L], and h rep-
resents a nonzero monolayer thickness, which serves as a
cutoff length of the line integrals (see Fig. 2). Using Egs.
(A5) and (A6), the integrand of Eq. (A7) is expanded in a
power series of x, and the coefficients are dependent on the
powers of the curvature «(s), the angle ¢(s), and their de-
rivatives. If we omit the higher-rank terms than the first order
of x, after integral in terms of x, we obtain their approximate
expressions as

2
L 11
F,=~- % In P’ § ds + %Mlejg K*(s)ds  (A8)

and

2
L
F~ % I 3@ sin? ¢(s)ds

=~ Toa M szg [11+ 13 cos 2¢(s)]x*(s)ds, (A9)
where F | and F| are the first and second terms of Eq. (A7),
respectively (Fgipoe=F | +F)). We use Egs. (A8) and (A9) for
the electrostatic energy arising from dipole-dipole interaction
in the following calculation. Note that Eq. (A8) is expressed
in the form of the sum of the effective negative line tension
and the curvature elastic energy.

The shape equation is derived as the equilibrium condi-
tion (8YF=0) of the shape free energy with respect to the
shape variations r(s) —r'(s")=r(s)+ #(s)m(s). The line ele-
ments of domain boundary ds’, tangent vector t(s’), normal
vector m(s’), and curvature «’(s’) of the domain boundary
after the shape variation are represented as

ds' =[1 - «(s)i(s)]ds, (A10)
t'(s") = t(s) + ¢ (s)m(s), (A11)
m’(s") =m(s) — ¢(s)t(s), (A12)
K (s") = K(s) + K ()P + i, (A13)

respectively. The first variation of each term of Eq. (1) is
calculated as
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AP&”ICZA:APJ‘ (s)ds,

A é ds=N\ § Kki(s)ds

2
s, (;

(A14)
(A15)

jg k(x)%dx —In %) Ki(s)ds

+ —MLL2{§ K Y(s)ds + ng Ksstﬂ(s)ds] , (A16)

2
SVF = - % § {% é; sin® ¢(x)dx — %L% k(x)%dx

13
-—L 35 cos 2 ¢k(x)?dx

48
1 +3 cos 2</>(s) } cfs)ds
2
39 2 -11
+ MﬁL2§ %K%ﬁ(é‘)d&'
13,,(
% —uiL sin 2 prr,f(s)ds
39 2 +11
WL 3§ %w@d& (A17)

If curve 7(s) describes a boundary of equilibrium domain, it
satisfies 8F=0 for any infinitesimal function #(s). Hence
combining Egs. (A14)-(A17), we get the shape equilibrium
condition of the domain,

AP — Ak+ ar’® + Bk, + Tk, =0, (A18)
where the definitions of the coefficients are
2 2
L 1+3cos?2 L
A:)\—ﬂln—e+—'u“( ¢)ln—
2 h 4 h
11 2
+ &,ul jg k(s)?ds + % sin® ¢(s)ds
;LL%\ (11 + 13 cos 2¢) k(s)?ds, (A19)
11 39cos2¢p-11
=—ul L%+ 2L2—, A20
47 g6ttt 192 (420)
1, 11+13c052¢
=—ul L2- P—r A21
B prLal M % (A21)
13 5, .
T=— Q}LHL sin 2¢. (A22)
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